Anti-Symmetrically Fused Model and Non-Linear Integral Equations in the Three-State Uimin-Sutherland Model

نویسندگان

  • Akira Fujii
  • Andreas Klümper
چکیده

We derive the non-linear integral equations determining the free energy of the three-state pure bosonic Uimin-Sutherland model. In order to find a complete set of auxiliary functions, the anti-symmetric fusion procedure is utilized. We solve the non-linear integral equations numerically and see that the low-temperature behavior coincides with that predicted by conformal field theory. The magnetization and magnetic susceptibility are also calculated by means of the non-linear integral equation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear integral equations for the thermodynamics of the sl(4)-symmetric Uimin-Sutherland model

We derive a finite set of nonlinear integral equations (NLIE) for the thermodynamics of the one-dimensional sl(4)-symmetric Uimin-Sutherland model. Our NLIE can be evaluated numerically for arbitrary finite temperature and chemical potentials. We recover the NLIE for sl(3) as a limiting case. In comparison to other recently derived NLIE, the evaluation at low temperature poses no problem in our...

متن کامل

Nonlinear Integral Equations for Thermodynamics of the Sl(r + 1) Uimin-sutherland Model

We derive traditional thermodynamic Bethe ansatz (TBA) equations for the sl(r + 1) Uimin-Sutherland model from the T -system of the quantum transfer matrix. These TBA equations are identical to the ones from the string hypothesis. Next we derive a new family of nonlinear integral equations (NLIE). In particular, a subset of these NLIE forms a system of NLIE which contains only a finite number o...

متن کامل

A meshless discrete Galerkin method for solving the universe evolution differential equations based on the moving least squares approximation

In terms of observational data, there are some problems in the standard Big Bang cosmological model. Inflation era, early accelerated phase of the evolution of the universe, can successfully solve these problems. The inflation epoch can be explained by scalar inflaton field. The evolution of this field is presented by a non-linear differential equation. This equation is considered in FLRW model...

متن کامل

A wavelet method for stochastic Volterra integral equations and its application to general stock model

In this article,we present a wavelet method for solving stochastic Volterra integral equations based on Haar wavelets. First, we approximate all functions involved in the problem by Haar Wavelets then, by substituting the obtained approximations in the problem, using the It^{o} integral formula and collocation points then, the main problem changes into a system of linear or nonlinear equation w...

متن کامل

Modified homotopy method to solve non-linear integral equations

In this article we decide to define a modified homotopy perturbation for solving non-linear integral equations. Almost, all of the papers that was presented to solve non-linear problems by the homotopy method, they used from two non-linear and linear operators. But we convert a non-linear problem to two suitable non-linear operators also we use from appropriate bases functions such as Legendre ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998